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Approximating stable and unstable manifolds in experiments
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We introduce a procedure to reveal invariant stable and unstable manifolds, given only experimental data.
We assume a model is not available and show how coordinate delay embedding coupled with invariant phase
space regions can be used to construct stable and unstable manifolds of an embedded saddle. We show that the
method is able to capture the fine structure of the manifold, is independent of dimension, and is efficient
relative to previous techniques.
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Many nonlinear phenomena can be explained by und
standing the behavior of the unstable dynamical obje
present in the dynamics. Dynamical mechanisms underly
chaos may be described by examining the stable and uns
invariant manifolds corresponding to unstable objects, s
as saddles@1#. Applications of the manifold topology hav
contrubuted towards understanding of chaos@2#, chaotic
saddle dynamics@3#, boundary crises@4#, and have been use
in real applications, such as algorithms for sustaining ch
@5,6#, communicating with chaos@7#, and preventing reso
nances in mechanics by spreading modal energy in cont
@8#, to name just a few. Despite the central importance
stable and unstable manifolds of unstable saddle orbits, t
structures have been previously entirely inaccessible to
perimental data, in the absence of a closed form mo
There has been a great deal of effort put forth to comp
these structures theoretically when a model is known, ba
on the stable manifold theorem. For manifolds of one dim
sion, model based methods have been used such as tho
Refs. @9,10# while techniques for two-dimensional dimen
sional methods have appeared in Refs.@11–13#. Techniques
known as the ‘‘sprinkler method,’’ which also assume tha
model is knowna priori, have appeared in Refs.@14–16#. In
this paper, we put forth a method intended to remedy the
between theory and experiment by obtaining a qualita
reconstruction of the stable and unstable manifolds w
only experimental data are available. Moreover, we illustr
how errors propagate in the technique by considering
complexity of the method. This has not been done previou
in Refs.@14–16#.

We introduce a computational procedure to construct
stable and unstable manifolds of a saddle directly from d
A random mesh of initial conditions is used to generate
jectories that remain near the saddle for long sojourns.
show that these initial conditions, along with their first fe
iterations, allow embedding techniques to be applied@17,18#.
We apply the algorithm to a model of the CO2 laser:

Z8~ t !52@D cos~Vt !2S#, ~1!

S8~ t !52e1s2eZ2e2SeZ11,

where I 5eZ and S denote~scaled! intensity and population
inversion @19#. Fixed parameters aree150.09, e250.003,
V50.9, andD51.88.
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We consider a basin saddle of Eq.~1! which lies on the
basin boundary between a chaotic attractor and a period-
periodic attractor. The chosen parameters are in a regio
which the chaotic attractor disappears and only a perio
attractor persists along with chaotic transients due to in
secting stable and unstable manifolds of the basin sad
Figure 1 depicts stable and unstable manifolds of the ba
saddle calculated by traditional techniques@10#. We have
chosen this parameter set precisely for its difficulty in co
puting the invariant manifolds of unstable saddles.

We describe our procedure using the model in Eq.~1! and
reconstruct the stable and unstable manifolds of the unst
saddle@20#, produced traditionally in Fig. 1 in the variable
(S,I ). Pick a region of interest to be a boxB of Fig. 1
containing the unstable saddle with part of its stable a
unstable manifolds. Inside that box we randomly pick a la
number N of initial conditions (S0i

,I 0i
) i 51,N and record

which of these initial conditions will generate trajectori

FIG. 1. ~Color! The stable and unstable manifolds of the las
model in Eq.~1! directly computed by traditional numerical analyt
techniques of Ref.@10#. S1 and S2 denote the period-two basin
boundary saddle. The unstable manifold is shown in bright white
the center of the figure and includes a chaotic saddle.
©2003 The American Physical Society01-1
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remaining in the box for a large number of iterations. For
laser model above, a good threshold was to retain the in
conditions that generate trajectories remaining in the box
no less thenn5200 periods of the drive. In addition, w
monitor a small neighborhood of the period-four attracti
orbit A, which also is contained inB, and eliminate any
points converging to this attractor since these points will
represent the manifolds we approximate.

Computational approximations to stable and unsta
manifolds are shown in Fig. 2. We algorithmically summ
rize our procedure used to generate Fig. 2.

~0! Fix a box B5@a,b#3@c,d# of interest, in the space
(S,I ), andA,B.

~1! Pick a random initial condition (S0 ,I 0) and run the
system forn iterations. In this case, we chosen5200.

~2! If the entiren-step trajectory in part 1 lies withinB,
and does not converge to setA, then record the correspond
ing initial conditions (S0 ,I 0) to a file and record the end
point that was the last observed point within the bo
(Sn ,I n).

~3! Repeat steps 1 and 2 forN randomly chosen initial
conditions.

~4! Plot the initial conditions$(S0i
,I 0i

)% i 51
N saved in step

3, thus producing the stable manifolds in Fig. 2, and plot
end points$(Sni

,I ni
)% i 51

N that produce the unstable manifold
in Fig. 2.

FIG. 2. Initial conditions$(S0i
,I 0i

)% i 51
N of Eq. ~1! whose trajec-

tories remain in the box for a lifetime of at leastn5200 iterations,
and their last observed end points,$(Sni

,I ni
)% i 51

N . Observe that the
area covered by the points$(S0i

,I 0i
)% i 51

N closely approximates the
stable manifold in Fig. 1, and the points$(Sni

,I ni
)% i 51

N approximate
the unstable manifolds.
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An essential feature of this algorithm is that the comp
tational complexity to produce Fig. 2 is quite different
compared to the traditional production used for Fig. 1. O
algorithm is: ~1! simpler, ~2! faster, and~3! experimentally
accessible. We will investigate properties~1! and ~2! at the
end of the paper, but first we discuss~3!.

In a real driven laser experiment one cannot measure
population inversion. Instead, we can reconstruct the
namical objects by delay embedding of the only directly o
servable quantity: intensity measurements. The proced
needs to be adapted only slightly. To generate additio
variables we use the value of the intensity after one per
I 1. The reconstructed stable manifold in (I 0 ,I 1) space is
shown in Fig. 3. In general, the Takens embedding theo
@21# tells us that to unfold an object embedded on
d-dimensional manifold may require up to 2d11 delay vari-
ables. The Sauer-Yorke embedology theorem@22# has sharp-
ened this estimate to allow ford to be the fractal dimension
Since Eq.~1! evolves in the plane,d52 suggests that up to
five delay variables may be necessary to unfold all poss
intersections. Comparing Figs. 2 and 3 we notice the fi
fractal structure. Still, in Fig. 3, there are self-intersectio
that cannot be found in Fig. 2. In Fig. 4, we show the reco
structed manifold in three dimensions, using the three v
ables of intensity at three delayed times (I 0 ,I 1 ,I 2). Viewed
from many angles~only one view can be shown here! reveals
no apparent self-intersections and the character of the inv
ant set in Fig. 3 is apparently the same as the invariant se
Fig. 2.

To initiate the above algorithm with intensity alone,
three delays, we restate the period-two saddle asI 1
5(I 01

,I 11
,I 21

) and I 25(I 02
,I 12

,I 22
). It will be necessary to

choose a bounding box@a,b#3@a,b#3@a,b# that contains
I 1 ;I 2, but if all of the experimental data are kept during t
experiment run time, then the thresholdsa and b can be
chosen to produce a relevant basin plot. Otherwise, the ab

FIG. 3. ~Color! Intensity delay variables (I 0 ,I 1) that generate
trajectories that remain in the box shown forn5200 iterations re-
veal structures that resemble the stable~red! manifolds in Figs. 1
and 2, and likewise the ending points (I n ,I n11) apparently reveal
the unstable~blue! manifolds.
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algorithm is essentially the same, except we record and
initial thresholds, and their two-step delays, which stay in
box. See Figs. 3 and 4 for results. We remark here that in
presence of noise perturbations up to 4% in the inten
sequence, the same structure is present in Fig. 4.

We now compare the computational complexity of o
calculation with that of the more traditional technique@10#
based on the the stable manifold theorem. For concrete
and ease of calculation, we analyze both techniques ass
ing application to searching for unstable manifolds in
Smale horseshoe@23#. Stable manifolds are considered sim
larly.

First we discuss the traditional technique, in a simplifi
form. The stable manifold theorem@24# provides the sim-
plest algorithm to numerically follow unstable manifold
place ane-spaced grid alongEu, a small eigenvector of the
unstable saddle point, of lengthd; thusM05d/e points are
used. Upon iteration, these points stretch apart at a ratelu
.1, the unstable Lyapunov number, but are compressed
ward the full nonlinear manifoldWu at a ratels,1 factor
upon each iteration. Therefore, to maintain ane-plot resolu-
tion, it is necessary to insert extra grid points upon ea
iteration, so that the distance between any two grows
more thane. At thenth iteration, the number of added poin
is Mn5lu

nd/e, and the total number of grid points that mu
be tracked duringn iterates of the initial vector follows

M5
d

e (
i 50

n

lu
i 5

d

e S lu
11n21

lu21 D . ~2!

The total manifold length yielded is

L total5dS lu
11n21

lu21 D , ~3!

FIG. 4. ~Color! Intensity delay variables (I 0 ,I 1 ,I 2) that generate
trajectories that remain in the box shown forn5200 iterations re-
veal structures that resemble the stable~red! manifolds in Figs. 1
and 2, and likewise the ending points (I n ,I n11 ,I n12) apparently
reveal the unstable~blue! manifolds.
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but most of this length is not within ans3s box windowV
of interest. For largen, there are long segments of unstab
manifold that stretch far outside the window of intere
Since the standard Smale horseshoe is used, we letf 52 be
the number of ‘‘folds’’ introduced at eachm step. Letm5n
2q be the time after which the initiald vector stretches
across the box, inq iterations, whereq solves, d(lu

11q

21/lu21)5s. Thus, the total length of unstable manifo
in the window follows

L in5s(
i 50

m

s fi5sS f 11m21

f 21 D . ~4!

We define an efficiency factor,

En5
~No. of grid pts. in window!

~No. of total gridpts.!
5

L in

eM

5
s~ f 11m21!~lu21!

d~ f 21!~lu
n1121!

, ~5!

where 0<E<1, and bigger is more efficient.
Efficiency of our technique applied to the same horses

follows a very different and essentially probabilistic calcu
tion. Since then-step forward invariant set of the Sma
horseshoe is essentiallyf n horizontal strips, for anf-times
folding horseshoe, then the area of then-step invariant set is
I n5( f ls)

ns2. We assume that points that leaveV never re-
turn. The fraction of invariant points inV follows

En5
m~ I n!

m~B!
5~ f ls!

n, ~6!

wherem(•) denotes Lebesgue measure. Therefore, the
pected number of invariant points^M in&, due to uniformly
samplingM initial conditions inB, is

^M in&5MEn . ~7!

We again ask how big mustM be for an expectede plot.
Given f n strips, each of sizels

n3s, ^q&, the expected num-
ber of points in each strip, is

^q&5
^M in&

f n
5Mls

n . ~8!

Therefore, the expected spacing between points in any g
strip is

^e&5
s

^q&
, ~9!

from which follows

^M &5
s

^e&ls
n

. ~10!

The most striking feature of the efficiencies of the tw
techniques, as reflected by contrasting Eq.~5! versus Eq.~6!,
1-3
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and also Eq.~2! versus Eq.~10!, is that the complexity of the
stable-manifold based technique compounds with the
stable Lyapunov number, while it is the stable Lyapun
number that moderates the complexity of our new proba
listic algorithm. Therefore, the relative sizes oflu and ls
ultimately determine which approach is more efficient. W
emphasize thatn for the traditional technique is moderate
by Eq.~4!, and is essentially fixed by the amount of manifo
length wished in the screen as one grows the unstable m
fold. That is quite different from then for our probabilistic
algorithm, which is chosena priori as the lifetime in the box
W of an initial condition. As we have developed,f moderates
the number of folds of the unstable manifold which can
resolved.

In conclusion, the procedure described to approximate
variant unstable and stable manifolds via experimental p
cedures is computationally efficient, and independent
phase space dimension. We have shown that these inva
structures are accessible to an experimentalist, using
n

.
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time-delay embeddings of a measured data set, which
been suitably restricted as we have described. Compare
other methods@10,25# the length of the segment of manifol
which is identified is not as seriously restricted in this alg
rithm. ~The Lyapunov numbers of the governing saddle
lu53.9, ls50.06. For the example considered here, o
method is estimated to be more than 1000 times faster
the segments methods such as in Ref.@10#. Error analysis
also shows that withn550 iterates, no discernible change
in the results are observed.! The current procedure was ap
plied to reveal the stable manifolds of a basin saddle tha
known@4# to form the basin boundary between attractors.
in particular, the above procedure can be used not only
increase the predictability of experimental dynamics, but c
also be especially helpful in control algorithms for sustaini
chaos such as in Ref.@6#.

I.B.S. and I.T. are supported by the Office of Naval R
search. E.B. is supported by the National Science Founda
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