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Approximating stable and unstable manifolds in experiments
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We introduce a procedure to reveal invariant stable and unstable manifolds, given only experimental data.
We assume a model is not available and show how coordinate delay embedding coupled with invariant phase
space regions can be used to construct stable and unstable manifolds of an embedded saddle. We show that the
method is able to capture the fine structure of the manifold, is independent of dimension, and is efficient
relative to previous techniques.
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Many nonlinear phenomena can be explained by under- We consider a basin saddle of E4) which lies on the
standing the behavior of the unstable dynamical objectbasin boundary between a chaotic attractor and a period-four
present in the dynamics. Dynamical mechanisms underlyingeriodic attractor. The chosen parameters are in a region in
chaos may be described by examining the stable and unstabhhich the chaotic attractor disappears and only a periodic
invariant manifolds corresponding to unstable objects, suchttractor persists along with chaotic transients due to inter-
as saddle$1]. Applications of the manifold topology have secting stable and unstable manifolds of the basin saddle.
contrubuted towards understanding of chd@$ chaotic Figure 1 depicts stable and unstable manifolds of the basin
saddle dynamicE3], boundary crisep4], and have been used saddle calculated by traditional techniqud®]. We have
in real applications, such as algorithms for sustaining chaoshosen this parameter set precisely for its difficulty in com-
[5,6], communicating with chaof7], and preventing reso- puting the invariant manifolds of unstable saddles.
nances in mechanics by spreading modal energy in continua We describe our procedure using the model in @gand
[8], to name just a few. Despite the central importance ofeconstruct the stable and unstable manifolds of the unstable
stable and unstable manifolds of unstable saddle orbits, thesaddle[20], produced traditionally in Fig. 1 in the variables
structures have been previously entirely inaccessible to exS,l). Pick a region of interest to be a bd of Fig. 1
perimental data, in the absence of a closed form modekontaining the unstable saddle with part of its stable and
There has been a great deal of effort put forth to computeinstable manifolds. Inside that box we randomly pick a large
these structures theoretically when a model is known, baseaumber N of initial conditions §oi,|oi)i:1,N and record
on the stable manifold theorem. For manifolds of one dimenyhich of these initial conditions will generate trajectories
sion, model based methods have been used such as those in
Refs. [9,10] while techniques for two-dimensional dimen-
sional methods have appeared in R¢1d—13. Techniques
known as the “sprinkler method,” which also assume that a
model is knowra priori, have appeared in Refd4-1§. In
this paper, we put forth a method intended to remedy the gap
between theory and experiment by obtaining a qualitative
reconstruction of the stable and unstable manifolds when
only experimental data are available. Moreover, we illustrate
how errors propagate in the technique by considering the
complexity of the method. This has not been done previously
in Refs.[14-16.

We introduce a computational procedure to construct the
stable and unstable manifolds of a saddle directly from data.
A random mesh of initial conditions is used to generate tra-
jectories that remain near the saddle for long sojourns. We
show that these initial conditions, along with their first few
iterations, allow embedding techniques to be apdliej19.

Ln(S)

We apply the algorithm to a model of the G@ser: =5
Z'(t)=—[A cogQt)—S], (1) =22 Ln() .
S'(t)=—¢€;5—e’— e,Se+1, FIG. 1. (Color The stable and unstable manifolds of the laser

model in Eq.(1) directly computed by traditional numerical analytic
wherel =e“ and S denote(scaled intensity and population techniques of Ref[10]. S, and S, denote the period-two basin
inversion[19]. Fixed parameters are;=0.09, €,=0.003, boundary saddle. The unstable manifold is shown in bright white in
0=0.9, andA=1.88. the center of the figure and includes a chaotic saddle.
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FIG. 3. (Color Intensity delay variablesl §,l;) that generate
trajectories that remain in the box shown for 200 iterations re-
veal structures that resemble the stafpkd) manifolds in Figs. 1
and 2, and likewise the ending points, (I,.1) apparently reveal
the unstabléblue) manifolds.
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An essential feature of this algorithm is that the compu-
Ln(lp) tational complexity to produce Fig. 2 is quite different as
. " N _ compared to the traditional production used for Fig. 1. Our
FIG. 2. Initial conditions{(Sy,.10)}i=1 of Eq. (1) whose trajec-  gi5orithm is: (1) simpler, (2) faster, and(3) experimentally
tories remain in the box for a lifetime of at least 200 iterations, accessible. We will investigate propertiéd and (2) at the
and their last observed end poin{ésni,lni)}i“:l. Observe that the end of the paper, but first we discus.

area covered by the poinf¢Sy,1o)}it; closely %PPYOXimates the  |n a real driven laser experiment one cannot measure the
stable manifold in Fig. 1, and the poir§S;,15)}i=, approximate  population inversion. Instead, we can reconstruct the dy-
the unstable manifolds. namical objects by delay embedding of the only directly ob-

o ) ) servable quantity: intensity measurements. The procedure
remaining in the box for a large number of iterations. For theyeeds to be adapted only slightly. To generate additional
laser model above, a good threshold was to retain the initigjariables we use the value of the intensity after one period
conditions that generate trajectories remaining in the box fo[l_ The reconstructed stable manifold ih,(l,) space is
no less them=200 periods of the drive. In addition, we shown in Fig. 3. In general, the Takens embedding theorem
monitor a small neighborhood of the period-four attracting[21] tells us that to unfold an object embedded on a
orbit A, which also is contained i3, and eliminate any g gimensional manifold may require up tal2 1 delay vari-
points converging to this attractor since these points will N0gples. The Sauer-Yorke embedology theof@aj has sharp-
represent the manifolds we approximate. ened this estimate to allow fatto be the fractal dimension.

Cpmputatlonal approx[matlons to stz_;lble' and unstablesjyce Eq.(1) evolves in the planed=2 suggests that up to
manifolds are shown in Fig. 2. We algorithmically summa-fiye delay variables may be necessary to unfold all possible

rize our procedure used to generate Fig. 2. intersections. Comparing Figs. 2 and 3 we notice the fine
(0) Fix a boxB=[a,b]X[c,d] of interest, in the space fractal structure. Still, in Fig. 3, there are self-intersections

(S1), andACB. o - that cannot be found in Fig. 2. In Fig. 4, we show the recon-
(1) Pick a random initial condition%,lo) and run the  strycted manifold in three dimensions, using the three vari-

system forn iterations. In this case, we chose=200. ables of intensity at three delayed timesg,(;,1,). Viewed

and does not converge to sktthen record the correspond- g apparent self-intersections and the character of the invari-

ing initial conditions &,lo) to a file and record the end  ant set in Fig. 3 is apparently the same as the invariant set in
point that was the last observed point within the box,fig. 2.

(Sn.iln). o To initiate the above algorithm with intensity alone, in
(3) _Repeat StepS 1 and 2 fN randomly Chosen |n|t|a| three de'ayS, we restate the period_two saddle |§S
conditions. =(lopl1,:12,) andl,=(lg 11,15 It will be necessary to

(4) Plot the initial conditioni(soi,loi)}i’\':l saved in step choose a bounding bopa,b]x[a,b]X[a,b] that contains
3, thus producing thNe stable manifolds in Fig. 2, and plot thq :|, but if all of the experimental data are kept during the
end points{(S,,.1,)}i-, that produce the unstable manifolds experiment run time, then the thresholdsand b can be
in Fig. 2. chosen to produce a relevant basin plot. Otherwise, the above
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5 but most of this length is not within asx s box windowV

of interest. For large, there are long segments of unstable
manifold that stretch far outside the window of interest.
Since the standard Smale horseshoe is used, wie=l&t be
the number of “folds” introduced at eacim step. Letm=n
—(g be the time after which the initiab vector stretches
across the box, ing iterations, whereq solves, 5()\5“1
—1/\,—1)=s. Thus, the total length of unstable manifold
in the window follows

m ) fl+ m__ 1
Lin=5>, sf'=s(—) (4)
=) f—-1
. . We define an efficiency factor,
Ln(IO) 05 s -0 -5 0 8
Ln(l4) (No. of grid pts. in window L;,
n -
FIG. 4. (Color) Intensity delay variabled §,1,1,) that generate (No. of total gridpts) M
trajectories that remain in the box shown for 200 iterations re- S(FIFM—1)(A,—1)
veal structures that resemble the stafwkr) manifolds in Figs. 1 = - , (5)
and 2, and likewise the ending point, (I ,.1,1,.,) apparently S(f—1)(\j"'-1)

reveal the unstablélue) manifolds.
where O<£=<1, and bigger is more efficient.

algorithm is essentially the same, except we record and plot Efficiency of our technique applied to the same horseshoe

initial thresholds, and their two-step delays, which stay in thefpllows_a very different and essgntia_lly probabilistic calcula-

box. See Figs. 3 and 4 for results. We remark here that in thiion. Since _then—step forwarq Invariant set of the_ Smale

presence of noise perturbations up to 4% in the intensity’®rSeshoe is essentially horizontal strips, for arf-times

sequence, the same structure is present in Fig. 4. olding horseshoe, then the area of tiketep invariant set is
We now compare the computational complexity of our!n=(fA9)"s?. We assume that points that leavenever re-

calculation with that of the more traditional technigid] ~ tU- The fraction of invariant points i follows

based on the the stable manifold theorem. For concreteness

and ease of calculation, we analyze both techniques assum- £ :M: A" 6

. - : _ : n (fx9)", (6)

ing application to searching for unstable manifolds in a m(B)

Ew;le horseshd@3]. Stable manifolds are considered simi- wherem(-) denotes Lebesgue measure. Therefore, the ex-

dpected number of invariant pointd;,), due to uniformly

First we discuss the traditional technique, in a simplifie . S " ! )
q b samplingM initial conditions inB, is

form. The stable manifold theorefi24] provides the sim-
plest algorithm to n_umerlcally follow unstable manifolds: (M) =ME, . @
place ane-spaced grid along", a small eigenvector of the

unstable saddle point, of lengt) thusM,= d/€ points are e again ask how big mus#l be for an expected plot.

used. Upon iteration, these points stretch apart at aN@te Given " strips, each of sizaxs, (q), the expected num-
>1, the unstable Lyapunov number, but are compressed t@ser of points in each strip, is

ward the full nonlinear manifoldV" at a ratex,<1 factor

upon each iteration. Therefore, to maintaineaplot resolu- (M) N

tion, it is necessary to insert extra grid points upon each ()= fn =MAg. ®
iteration, so that the distance between any two grows by

is M, =\ d/€, and the total number of grid points that must strip is

be tracked during iterates of the initial vector follows

s
€=, 9
5é i 5(>\ﬁ+”—1) e (@)
M==22 N=|——]. 2
ei=o " e\ N1 @ from which follows
The total manifold length yielded is (M)= ) (10)
(€)M
1
Lo _s N1 3) The most striking feature of the efficiencies of the two
total N—1 ) techniques, as reflected by contrasting &g versus Eq(6),
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and also Eq(2) versus Eq(10), is that the complexity of the time-delay embeddings of a measured data set, which has
stable-manifold based technique compounds with the unbeen suitably restricted as we have described. Compared to
stable Lyapunov number, while it is the stable Lyapunovother method$10,25 the length of the segment of manifold
number that moderates the complexity of our new probabiwhich is identified is not as seriously restricted in this algo-
listic algorithm. Therefore, the relative sizes of and A,  rithm. (The Lyapunov numbers of the governing saddle are
ultimately determine which approach is more efficient. Wehu=3.9, As=0.06. For the example considered here, our
emphasize than for the traditional technique is moderated method is estimated to be more t_han 1000 times faste_r than
by Eq.(4), and is essentially fixed by the amount of manifold the segments methods such as in R&0]. Error analysis

length wished in the screen as one grows the unstable marfil-ls?] ShOWSI that Witg":50 (;[_Erz]rates, no discergible changes
fold. That is quite different from the for our probabilistic " the results are observedihe current procedure was ap-
algorithm, which is chosea priori as the lifetime in the box plied to reveal the stable manifolds of a basin saddle that is

W of an initial condition. As we have developddnoderates known[4] to form the basin boundary between attractors. So,

. : in particular, the above procedure can be used not only to
trzgowergber of folds of the unstable manifold which can beincrease the predictability of experimental dynamics, but can

. . . ._also be especially helpful in control algorithms for sustainin
In conclusion, the procedure described to approximate in b y hep g g

) ) : . chaos such as in Rdf6].
variant unstable and stable manifolds via experimental pro- €fe]

cedures is computationally efficient, and independent of 1.B.S. and I.T. are supported by the Office of Naval Re-
phase space dimension. We have shown that these invariasgarch. E.B. is supported by the National Science Foundation
structures are accessible to an experimentalist, using onlynder Grant No. DMS-0071314.
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